Types of External Memory

- Magnetic Disk
 - RAID
 - Removable
- Optical
 - CD-ROM
 - CD-Recordable (CD-R)
 - CD-R/W
 - DVD
- Magnetic Tape

Magnetic Disk
- Disk substrate coated with magnetizable material (iron oxide...rust)
- Substrate used to be aluminium
- Now glass
 - Improved surface uniformity
 - Increases reliability
 - Reduction in surface defects
 - Reduced read/write errors
 - Lower flight heights (See later)
 - Better stiffness
 - Better shock/damage resistance

Read and Write Mechanisms
- Recording & retrieval via conductive coil called a head
- May be single read/write head or separate ones
- During read/write, head is stationary, platter rotates
- Write
 - Current through coil produces magnetic field
 - Pulses sent to head
 - Magnetic pattern recorded on surface below
- Read (traditional)
 - Magnetic field moving relative to coil produces current
 - Coil is the same for read and write
- Read (contemporary)
 - Separate read head, close to write head
 - Partially shielded magneto resistive (MR) sensor
 - Electrical resistance depends on direction of magnetic field
 - High frequency operation
 - Higher storage density and speed
Data Organization and Formatting

- Concentric rings or tracks
 - Gaps between tracks
 - Reduce gap to increase capacity
 - Same number of bits per track (variable packing density)
 - Constant angular velocity
- Tracks divided into sectors
- Minimum block size is one sector
- May have more than one sector per block

Disk Velocity

- Bit near centre of rotating disk passes fixed point slower than bit on outside of disk
- Increase spacing between bits in different tracks
- Rotate disk at constant angular velocity (CAV)
 - Gives pie shaped sectors and concentric tracks
 - Individual tracks and sectors addressable
 - Move head to given track and wait for given sector
 - Waste of space on outer tracks
 - Lower data density
- Can use zones to increase capacity
 - Each zone has fixed bits per track
 - More complex circuitry
Finding Sectors
- Must be able to identify start of track and sector
- Format disk
 - Additional information not available to user
 - Marks tracks and sectors

Winchester Disk Format
Seagate ST506

Characteristics
- Fixed (rare) or movable head
- Removable or fixed
- Single or double (usually) sided
- Single or multiple platter
- Head mechanism
 - Contact (Floppy)
 - Fixed gap
 - Flying (Winchester)
Fixed/Movable Head Disk

- **Fixed head**
 - One read write head per track
 - Heads mounted on fixed ridged arm
- **Movable head**
 - One read write head per side
 - Mounted on a movable arm

Removable or Not

- **Removable disk**
 - Can be removed from drive and replaced with another disk
 - Provides unlimited storage capacity
 - Easy data transfer between systems
- **Nonremovable disk**
 - Permanently mounted in the drive

Multiple Platter

- One head per side
- Heads are joined and aligned
- Aligned tracks on each platter form cylinders
- Data is striped by cylinder
 - reduces head movement
 - Increases speed (transfer rate)
Tracks and Cylinders

- Floppy Disk
 - 8”, 5.25”, 3.5”
 - Small capacity
 - Up to 1.44Mbyte (2.88M never popular)
 - Slow
 - Universal
 - Cheap
 - Obsolete?

Winchester Hard Disk (1)
- Developed by IBM in Winchester (USA)
- Sealed unit
- One or more platters (disks)
- Heads fly on boundary layer of air as disk spins
- Very small head to disk gap
- Getting more robust

Winchester Hard Disk (2)
- Universal
- Cheap
- Fastest external storage
- Getting larger all the time
 - 250 Gigabyte now easily available
Speed
- Seek time
 - Moving head to correct track
- (Rotational) latency
 - Waiting for data to rotate under head
- Access time = Seek + Latency
- Transfer rate

Timing of Disk I/O Transfer

RAID
- Redundant Array of Independent Disks
- Redundant Array of Inexpensive Disks
- 6 levels in common use
- Not a hierarchy
- Set of physical disks viewed as single logical drive by O/S
- Data distributed across physical drives
- Can use redundant capacity to store parity information

RAID 0
- No redundancy
- Data striped across all disks
- Round Robin striping
- Increase speed
 - Multiple data requests probably not on same disk
 - Disks seek in parallel
 - A set of data is likely to be striped across multiple disks
<table>
<thead>
<tr>
<th>RAID 1</th>
<th>RAID 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirrored Disks</td>
<td>Disks are synchronized</td>
</tr>
<tr>
<td>Data is striped across disks</td>
<td>Very small stripes</td>
</tr>
<tr>
<td>2 copies of each stripe on separate disks</td>
<td>— Often single byte/word</td>
</tr>
<tr>
<td>Read from either</td>
<td>Error correction calculated across corresponding bits on disks</td>
</tr>
<tr>
<td>Write to both</td>
<td>Multiple parity disks store Hamming code error correction in corresponding positions</td>
</tr>
<tr>
<td>Recovery is simple</td>
<td>Lots of redundancy</td>
</tr>
<tr>
<td>— Swap faulty disk & re-mirror</td>
<td>— Expensive</td>
</tr>
<tr>
<td>— No down time</td>
<td>— Not used</td>
</tr>
<tr>
<td>Expensive</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAID 3</th>
<th>RAID 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar to RAID 2</td>
<td>Each disk operates independently</td>
</tr>
<tr>
<td>Only one redundant disk, no matter how large the array</td>
<td>Good for high I/O request rate</td>
</tr>
<tr>
<td>Simple parity bit for each set of corresponding bits</td>
<td>Large stripes</td>
</tr>
<tr>
<td>Data on failed drive can be reconstructed from surviving data and parity info</td>
<td>Bit by bit parity calculated across stripes on each disk</td>
</tr>
<tr>
<td>Very high transfer rates</td>
<td>Parity stored on parity disk</td>
</tr>
</tbody>
</table>
RAID 5
- Like RAID 4
- Parity striped across all disks
- Round robin allocation for parity stripe
- Avoids RAID 4 bottleneck at parity disk
- Commonly used in network servers
- N.B. DOES NOT MEAN 5 DISKS!!!!!

RAID 6
- Two parity calculations
- Stored in separate blocks on different disks
- User requirement of N disks needs N+2
- High data availability
 - Three disks need to fail for data loss
 - Significant write penalty

RAID 0, 1, 2, 3 & 4
Optical Storage CD-ROM

- Originally for audio
- 650Mbytes giving over 70 minutes audio
- Polycarbonate coated with highly reflective coat, usually aluminium
- Data stored as pits
- Read by reflecting laser
- Constant packing density
- Constant linear velocity
CD-ROM Drive Speeds

- Audio is single speed
 - Constant linear velocity
 - 1.2 ms\(^{-1}\)
 - Track (spiral) is 5.27km long
 - Gives 4391 seconds = 73.2 minutes
- Other speeds are quoted as multiples
 - e.g. 24x
- Quoted figure is maximum drive can achieve

CD-ROM Format

- Mode 0 = blank data field
- Mode 1 = 2048 byte data + error correction
- Mode 2 = 2336 byte data

Random Access on CD-ROM

- Difficult
- Move head to rough position
- Set correct speed
- Read address
- Adjust to required location
 - (Yawn!)
Other Optical Storage

- **CD-Recordable (CD-R)**
 - WORM
 - Now affordable
 - Compatible with CD-ROM drives
- **CD-RW**
 - Erasable
 - Getting cheaper
 - Mostly CD-ROM drive compatible
 - Phase change
 - Material has two different reflectivities in different phase states

DVD - what’s in a name?

- **Digital Video Disk**
 - Used to indicate a player for movies
 - Only plays video disks
- **Digital Versatile Disk**
 - Used to indicate a computer drive
 - Will read computer disks and play video disks
- **Dogs Veritable Dinner**
- **Officially - nothing!!!**

DVD - technology

- Multi-layer
- Very high capacity (4.7G per layer)
- Full length movie on single disk
 - Using MPEG compression
- Finally standardized (honest!)
- Movies carry regional coding
- Players only play correct region films
- Can be “fixed”

DVD – Writable

- Loads of trouble with standards
- First generation DVD drives may not read first generation DVD-W disks
- First generation DVD drives may not read CD-RW disks
- Wait for it to settle down before buying!
CD and DVD

- Serial access
- Slow
- Very cheap
- Backup and archive

Magnetic Tape

- Serial access
- Slow
- Very cheap
- Backup and archive

Internet Resources

- Optical Storage Technology Association
 - Good source of information about optical storage technology and vendors
 - Extensive list of relevant links
- DLTtape
 - Good collection of technical information and links to vendors
- Search on RAID